


2014

# STATISTISCHE BERICHTE





Bestimmte klimawirksame Stoffe 2013

### Inhalt

| s                                                                                                   | Seite |
|-----------------------------------------------------------------------------------------------------|-------|
| Vorbemerkungen                                                                                      | 3     |
| Glossar                                                                                             | 4     |
| Zeichenerklärungen und Abkürzungen                                                                  | 5     |
| Tabellen                                                                                            |       |
| T 1 Verwendung bestimmter klimawirksamer Stoffe 2003–2013 nach Stoffgruppen                         | 6     |
| T 2 Verwendung bestimmter klimawirksamer Stoffe 2003–2013 nach Verwendungsarten                     | 7     |
| T 3 Verwendung bestimmter klimawirksamer Stoffe nach Wirtschaftszweigen                             | 8     |
| Grafiken                                                                                            |       |
| G 1 Verwendung bestimmter klimawirksamer Stoffe 2003–2013 nach ausgewählten Verwendungsarten        | 6     |
| G 2 Verwendung bestimmter klimawirksamer Stoffe 2013 nach Verwendungsarten                          | 7     |
| G 3 Verwendung bestimmter klimawirksamer Stoffe in den Jahren 2003 und 2013 nach Wirtschaftszweigen | 8     |
| Anhang                                                                                              |       |
| Stoffliste                                                                                          |       |

#### Vorbemerkungen

#### **Berichtskreis**

Diese Erhebung wird bei Unternehmen durchgeführt, die bestimmte klimawirksame Stoffe (Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu sechs Kohlenstoffatomen) herstellen bzw. in Mengen von mehr als 20 kg pro Stoff und Jahr zur Herstellung, Instandhaltung, Wartung oder Reinigung von Erzeugnissen verwenden. Die Ergebnisse dienen u. a. der Darstellung des Treibhauspotenzials (GWP/CO2- Äquivalent) dieser Stoffe. Die Stoffe werden insbesondere als Kältemittel, Treibmittel in Aerosolerzeugnissen und bei der Verschäumung von Kunst- und Schaumstoffen sowie als Löse- und Löschmittel eingesetzt. Als Unternehmen gilt die kleinste rechtliche Einheit, die aus handels- und/oder steuerrechtlichen Gründen Bücher führt und bilanziert.

#### Rechtsgrundlagen

Umweltstatistikgesetz (UStatG) vom 16. August 2005 (BGBI. I S. 2446), das zuletzt durch Artikel 5 Absatz 1 des Gesetzes vom 24. Februar 2012 (BGBI. I S. 212) geändert worden ist, in Verbindung mit dem Bundesstatistikgesetz (BStatG) vom 22. Januar 1987 (BGBI. I S. 462, 565), das zuletzt durch Artikel 13 des Gesetzes vom 25. Juli 2013 (BGBI. I S. 2749) geändert worden ist. Erhoben werden die Angaben zu § 10 Absatz 1 UStatG.

#### Vergleichbarkeit

Bis zum Berichtsjahr 2004 wurden neben bestimmten klimawirksamen Stoffen auch ausgewählte ozonschichtschädigende Stoffe (FCKW, H-FCKW und FCKW-haltige Blends) in die Erhebung einbezogen. Da das Ziel, die Verwendung dieser Stoffe einzustellen, im Jahre 2004 nahezu erreicht war, wurde mit Inkrafttreten des neuen Umweltstatistikgesetzes im Jahre 2005 auf die Einbeziehung ozonschichtschädigender Stoffe verzichtet. Dies gilt auch für Blends (Gemische), die mindestens einen ozonschichtschädigenden Stoff enthalten. Gleichzeitig wurde ab Berichtsjahr 2006 die untere Erfassungsgrenze von 50 kg pro Stoff und Jahr auf 20 kg reduziert (siehe Berichtskreis).

#### Glossar

#### **Ausgangsstoffe**

Stoffe, die zur Herstellung anderer chemischer Erzeugnisse bestimmt sind und dabei vollständig vernichtet oder umgewandelt werden. Sie werden als nicht emissionsrelevant angesehen.

#### **Blends**

Blends sind Gemische oder Zubereitungen aus zwei oder mehr Stoffen, die mindestens einen klimawirksamen Stoff enthalten. Sie werden als Ersatzstoffe für die verbotenen FCKW – vorwiegend als Kältemittel – eingesetzt. Die GWP-Werte/CO2-Äquivalente der Blends werden aus den in ihnen enthaltenen Stoffen ermittelt.

# FCKW (vollhalogenierte Fluorchlorkohlenwasserstoffe) und H-FCKW (teilhalogenierte Fluorchlorkohlenwasserstoffe) - ab Berichtsjahr 2005 nicht mehr erfragt

Die Fluorchlorkohlenwasserstoffe gelten als klimawirksame und ozonschichtschädigende Stoffe. Sie werden unterschieden in vollhalogenierte (FCKW) und teilhalogenierte Fluorchlorkohlenwasserstoffe (H-FCKW). Die FCKW sind Kohlenwasserstoffe, deren Wasserstoffatome vollständig durch Chlor- oder Fluoratome ersetzt sind. Sie besitzen ein hohes Treibhauspotenzial (GWP-Werte/CO2-Äquivalente bis zu 11 700) und Ozonabbaupotenzial. Die H-FCKW sind Kohlenwasserstoffe, deren Wasserstoffatome teilweise durch Chlor- und Fluoratome ersetzt sind. Die GWP-Werte/CO2-Äquivalente liegen durchschnittlich bei 800, in Einzelfällen können sie jedoch eine Höhe von 2 000 erreichen.

#### FKW (vollhalogenierte Fluorkohlenwasserstoffe) und H-FKW (teilhalogenierte Fluorkohlenwasserstoffe)

Die Fluorkohlenwasserstoffe gelten als klimawirksame Stoffe. Sie besitzen keine ozonschichtschädigende Wirkung. Sie werden in vollhalogenierte (FKW) und teilhalogenierte Fluorkohlenwasserstoffe (H-FKW) unterschieden. Die FKW sind Kohlenwasserstoffe, deren Wasserstoffatome vollständig durch Fluoratome ersetzt sind. H-FKW sind Kohlenwasserstoffe, deren Wasserstoffatome teilweise durch Fluoratome ersetzt sind. Sie besitzen sehr unterschiedliche GWP-Werte/CO2-Äquivalente und tragen zur Erwärmung, d. h. zum sogenannten Treibhauseffekt, bei.

#### Geregelte Stoffe - ab Berichtsjahr 2005 nicht mehr erfragt

Geregelte Stoffe sind die in der Verordnung (EG) Nr. 2037/2000 vom 29. Juni 2000, in der jeweils geltenden Fassung, genannten Stoffe. Dies sind voll- und teilhalogenierte Fluorchlorkohlenwasserstoffe (FCKW, HFCKW), vollhalogenierte Fluorbromkohlenwasserstoffe (FBKW/Halone), teilhalogenierte Fluorbromkohlenwasserstoffe (H-FBKW), Tetrachlorkohlenstoff, 1,1,1-Trichlorethan, Methylbromid und Bromchlormethan. Diese Stoffe sind ozonschichtschädigend. In Ausführungsbestimmungen werden Produktion, Ein- und Ausfuhr und die Verwendung dieser Stoffe Genehmigungsverfahren unterworfen.

#### **GWP/CO2-Äquivalente (Global Warming Potential)**

Treibhausgase verfügen über ein unterschiedliches Erwärmungspotenzial, das sogenannte "Global Warming Potential" (GWP). Als Richtgröße dient die Klimawirksamkeit von Kohlendioxid (GWP von CO2 = 1), d. h. die Treibhauspotenziale anderer Stoffe bemessen sich relativ zu CO2. Der GWP-Wert/das CO2-Äquivalent gibt das Treibhauspotenzial eines Stoffes an und damit seinen Beitrag zur Erwärmung der bodennahen Luftschichten.

4

#### **Bestimmte klimawirksame Stoffe**

Als bestimmte klimawirksame Stoffe (siehe Seite 9) im Sinne dieser Erhebung gelten ausschließlich Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu sechs Kohlenstoffatomen mit den allgemeinen Summenformeln CnF2n+2 mit n=1, 2, ..., 6 (perfluorierte Alkane - FKW) und CnHmF2n+2-m mit n=1, 2, ..., 6 und 0 < m < 2n+2 (teilfluorierte Alkane - H-FKW).

Zu den klimawirksamen Stoffen zählen nicht Kohlenwasserstoffe wie z. B. Propan (R 290), Butan (R 600) und anorganische Stoffe wie Ammoniak (R 717), Wasser (R 718) und Kohlendioxid (R 744).

|   | Zeichenerklärungen und Abkürzungen                                                                       |                 |                                               |  |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|--|--|--|--|--|
|   | Zahl unbekannt oder geheim                                                                               | CO <sub>2</sub> | Kohlendioxid                                  |  |  |  |  |  |
| - | nichts vorhanden (genau Null)                                                                            |                 |                                               |  |  |  |  |  |
| 0 | Zahl ungleich Null, Betrag jedoch<br>kleiner als die Hälfte von 1 in der<br>letzten ausgewiesenen Stelle | FCKW            | vollhalogenierte Fluorchlorkohlenwasserstoffe |  |  |  |  |  |
|   |                                                                                                          | H-FCKW          | teilhalogenierte Fluorchlorkohlenwasserstoffe |  |  |  |  |  |

Abweichungen in den Summen erklären sich aus dem Runden der Einzelwerte.

#### T 1 Verwendung bestimmter klimawirksamer Stoffe 2003–2013 nach Stoffgruppen

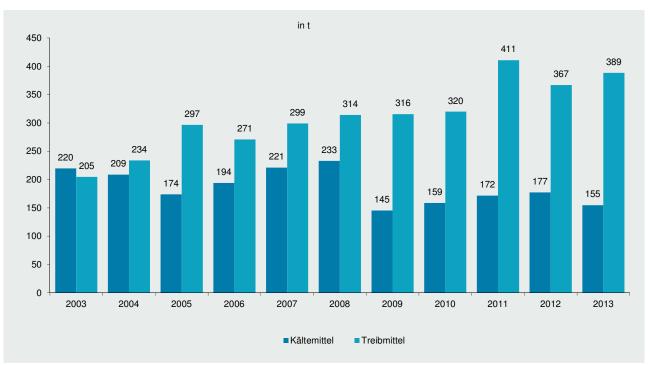
| Jahr | Insgesamt | Geregelte Stoffe<br>(FCKW, H-FCKW, sonstige) | FKW, H-FKW | Blends |
|------|-----------|----------------------------------------------|------------|--------|
|      |           | t                                            |            |        |
| 2003 | 431,5     | 72,6                                         | 292,5      | 66,4   |
| 2004 | 449,0     | 37,6                                         | 341,6      | 69,7   |
| 2005 | 475,9     |                                              | 412,6      | 63,3   |
| 2006 | 468,2     |                                              | 400,1      | 68,1   |
| 2007 | 520,3     |                                              | 431,2      | 89,1   |
| 2008 | 547,0     |                                              | 452,8      | 94,2   |
| 2009 | 461,2     |                                              | 379,9      | 81,3   |
| 2010 | 478,7     |                                              | 386,3      | 92,4   |
| 2011 | 582,6     |                                              | 483,7      | 98,9   |
| 2012 | 544,3     |                                              | 439,4      | 104,8  |
| 2013 | 543,4     | -                                            | 451,8      | 91,6   |
|      |           | Treibhauspotenz                              | ial        |        |
|      |           | 1 000 t CO₂-Äquival                          | ente       |        |
| 2003 | 822,0     | 266,6                                        | 402,4      | 152,9  |
| 2004 | 701,1     | 71,0                                         | 470,6      | 159,4  |
| 2005 | 714,3     |                                              | 565,3      | 149,0  |
| 2006 | 707,0     |                                              | 542,2      | 164,8  |
| 2007 | 782,4     |                                              | 574,3      | 208,1  |
| 2008 | 809,1     |                                              | 588,8      | 220,3  |
| 2009 | 691,0     |                                              | 494,2      | 196,8  |
| 2010 | 722,2     |                                              | 502,7      | 219,5  |
| 2011 | 867,4     |                                              | 631,4      | 236,1  |

<sup>1</sup> Bis 2004 einschließlich ozonschichtschädigende Stoffe (siehe Vorbemerkungen).

823,9

907,7

2012


2013

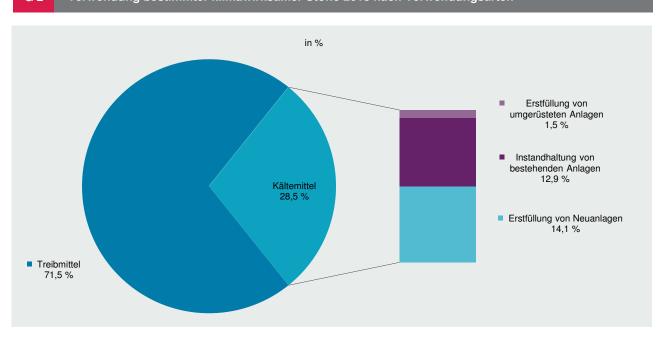
#### G 1 Verwendung bestimmter klimawirksamer Stoffe 2003–2013<sup>1</sup> nach ausgewählten Verwendungsarten

571,5

647,8

252,4 259,9



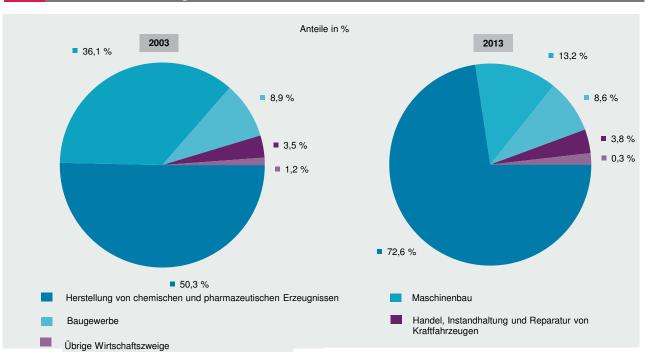

<sup>1</sup> Bis 2004 einschließlich ozonschichtschädigende Stoffe (siehe Vorbemerkungen).

#### Verwendung bestimmter klimawirksamer Stoffe 2003–2013<sup>1</sup> nach Verwendungsarten

|      | Als Kältemittel |           |          |                   | Als sonst                        | iges Mittel                           |                          |           |                           |
|------|-----------------|-----------|----------|-------------------|----------------------------------|---------------------------------------|--------------------------|-----------|---------------------------|
|      |                 |           |          | Erstfüllung       |                                  | Instand-                              | Als                      |           | -1-                       |
| Jahr | Insgesamt       | insgesamt | zusammen | von<br>Neuanlagen | von um-<br>gerüsteten<br>Anlagen | haltung von<br>bestehenden<br>Anlagen | Treibmittel <sup>2</sup> | insgesamt | als<br>Ausgangs-<br>stoff |
| t    |                 |           |          |                   |                                  |                                       | -                        |           |                           |
| 2003 | 431,5           | 219,8     | 127,0    |                   |                                  | 92,8                                  | 204,7                    | 7,1       | 2,2                       |
| 2004 | 449,0           | 208,7     | 125,5    | 120,3             | 5,2                              | 83,2                                  | 233,9                    | 6,4       | 1,2                       |
| 2005 | 475,9           | 174,0     | 126,6    | 124,0             | 2,6                              | 47,4                                  | 296,5                    | 5,4       | -                         |
| 2006 | 468,2           | 194,0     | 134,5    | 129,6             | 4,9                              | 59,4                                  | 270,8                    | 3,4       | -                         |
| 2007 | 520,3           | 221,1     | 163,0    | 159,6             | 3,4                              | 58,1                                  | 299,2                    | -         | -                         |
| 2008 | 547,0           | 232,9     | 177,4    | 171,4             | 6,1                              | 55,5                                  | 314,0                    | 0,0       | -                         |
| 2009 | 461,2           | 145,5     | 77,5     | 70,4              | 7,1                              | 68,0                                  | 315,7                    | -         | -                         |
| 2010 | 478,7           | 158,7     | 85,5     | 76,1              | 9,3                              | 73,3                                  | 319,9                    | -         | -                         |
| 2011 | 582,6           | 171,7     | 100,0    | 91,4              | 8,6                              | 71,7                                  | 410,9                    | -         | -                         |
| 2012 | 544,3           | 177,2     | 102,6    | 93,7              | 8,9                              | 74,6                                  | 367,1                    | -         | -                         |
| 2013 | 543,4           | 154,8     | 84,7     | 76,8              | 8,0                              | 70,0                                  | 388,6                    | -         | -                         |
|      |                 |           |          | Treibha           | auspotenzial                     |                                       |                          |           |                           |
|      |                 |           |          | 1 000 t C         | O₂-Äquivalente                   |                                       |                          |           |                           |
| 2003 | 822,0           | 391,6     | 231,6    |                   |                                  | 160,0                                 | 406,0                    | 24,4      | 17,4                      |
| 2004 | 701,1           | 354,5     | 206,6    | 196,3             | 10,3                             | 148,0                                 | 305,6                    | 41,0      | 9,4                       |
| 2005 | 714,3           | 293,9     | 205,6    | 200,6             | 5,0                              | 88,2                                  | 385,5                    | 34,9      | -                         |
| 2006 | 707,0           | 332,9     | 218,9    | 208,3             | 10,6                             | 114,1                                 | 352,2                    | 21,9      | -                         |
| 2007 | 782,4           | 393,4     | 273,5    | 266,4             | 7,1                              | 119,9                                 | 389,0                    | -         | -                         |
| 2008 | 809,1           | 400,7     | 299,3    | 286,3             | 13,0                             | 101,4                                 | 408,2                    | 0,3       | -                         |
| 2009 | 691,0           | 280,6     | 154,4    | 138,6             | 15,9                             | 126,2                                 | 410,4                    | -         | -                         |
| 2010 | 722,2           | 306,3     | 167,5    | 146,3             | 21,2                             | 138,7                                 | 415,9                    | -         | -                         |
| 2011 | 867,4           | 333,2     | 193,4    | 173,4             | 19,9                             | 139,8                                 | 534,2                    | -         | -                         |
| 2012 | 823,9           | 346,7     | 202,5    | 181,8             | 20,7                             | 144,3                                 | 477,2                    | -         | -                         |
| 2013 | 907,7           | 352,0     | 198,6    | 175,7             | 22,9                             | 153,3                                 | 555,7                    | -         | -                         |

<sup>1</sup> Bis 2004 einschließlich ozonschichtschädigende Stoffe (siehe Vorbemerkungen). - 2 Bei der Herstellung von Kunst- und Schaumstoffen sowie Aerosolen.

#### Verwendung bestimmter klimawirksamer Stoffe 2013 nach Verwendungsarten **G 2**




#### Verwendung bestimmter klimawirksamer Stoffe 2003–2013<sup>1</sup> nach Wirtschaftszweigen

| Jahr | Insgesamt | Verarbeitendes<br>Gewerbe | Baugewerbe                     | Handel, Instandhaltung<br>und Reparatur von<br>Kraftfahrzeugen | Sonstige<br>Wirtschafts-<br>zweige |
|------|-----------|---------------------------|--------------------------------|----------------------------------------------------------------|------------------------------------|
|      |           |                           | t                              |                                                                |                                    |
| 2003 | 431,5     | 376,3                     | 38,5                           | 15,1                                                           | 1,7                                |
| 2004 | 449,0     | 398,4                     | 34,0                           | 14,8                                                           | 1,7                                |
| 2005 | 475,9     | 434,9                     | 24,8                           | 14,7                                                           | 1,5                                |
| 2006 | 468,2     | 419,6                     | 26,7                           | 20,5                                                           | 1,4                                |
| 2007 | 520,3     | 470,4                     | 30,0                           | 18,5                                                           | 1,3                                |
| 2008 | 547,0     | 492,2                     | 35,7                           | 17,7                                                           | 1,3                                |
| 2009 | 461,2     | 406,5                     | 35,5                           | 17,9                                                           | 1,2                                |
| 2010 | 478,7     | 420,3                     | 37,1                           | 19,9                                                           | 1,5                                |
| 2011 | 582,6     | 517,8                     | 43,9                           | 19,5                                                           | 1,4                                |
| 2012 | 544,3     | 471,6                     | 51,2                           | 19,4                                                           | 2,0                                |
| 2013 | 543,4     | 474,1                     | 46,6                           | 20,8                                                           | 1,9                                |
|      |           | Tre                       | eibhauspotenzial               |                                                                |                                    |
|      |           | 1 000                     | t CO <sup>2</sup> -Äquivalente |                                                                |                                    |
| 2003 | 822,0     | 718,9                     | 80,3                           | 20,5                                                           | 2,2                                |
| 2004 | 701,1     | 608,0                     | 70,1                           | 20,6                                                           | 2,4                                |
| 2005 | 714,3     | 638,1                     | 53,8                           | 20,4                                                           | 1,9                                |
| 2006 | 707,0     | 617,5                     | 60,8                           | 26,9                                                           | 1,8                                |
| 2007 | 782,4     | 685,9                     | 70,5                           | 24,2                                                           | 1,8                                |
| 2008 | 809,1     | 699,2                     | 84,9                           | 23,1                                                           | 1,7                                |
| 2009 | 691,0     | 585,7                     | 80,3                           | 23,4                                                           | 1,6                                |
| 2010 | 722,2     | 610,9                     | 83,5                           | 25,9                                                           | 2,0                                |
| 2011 | 867,4     | 736,2                     | 103,9                          | 25,4                                                           | 1,9                                |
| 2012 | 823,9     | 674,8                     | 120,2                          | 25,2                                                           | 3,6                                |
| 2013 | 907,7     | 748,3                     | 126,0                          | 30,6                                                           | 2,7                                |

<sup>1</sup> Bis 2004 einschließlich ozonschichtschädigende Stoffe (siehe Vorbemerkungen).

## Verwendung bestimmter klimawirksamer Stoffe in den Jahren 2003 und 2013 nach Wirtschaftszweigen



#### Bestimmte klimawirksame Stoffe und deren Blends

Stand: März 2014

|       |          |         |                                               |                                                                 | CO <sub>2</sub> -         |
|-------|----------|---------|-----------------------------------------------|-----------------------------------------------------------------|---------------------------|
| Stoff |          | STKZ 1) | Chemische Bezeichnung / Handelsbezeichnung    | Summenformel                                                    | Äquivalente <sup>2)</sup> |
| R     | 14       | 9501    | : Tetrafluormethan                            | CF <sub>4</sub>                                                 | 7390                      |
| R     | 23       | 9601    | : Trifluormethan                              | CHF <sub>3</sub>                                                | 14800                     |
| R     | 32       | 9603    | : Difluormethan                               | CH <sub>2</sub> F <sub>2</sub>                                  | 675                       |
| R     | 41       | 9605    | : Fluormethan                                 | CH <sub>3</sub> F                                               | 92                        |
| R     | 43-10mee | 9670    | : 1,1,1,2,2,3,4,5,5,5-Decafluorpentan         | CF <sub>3</sub> CF <sub>2</sub> CHFCHFCF <sub>3</sub>           | 1640                      |
| R     | 116      | 9506    | : Hexafluorethan                              | C <sub>2</sub> F <sub>6</sub>                                   | 12200                     |
| R     | 125      | 9607    | : Pentafluorethan                             | CHF <sub>2</sub> -CF <sub>3</sub>                               | 3500                      |
| R     | 134      | 9609    | : 1,1,2,2-Tetrafluorethan                     | CHF <sub>2</sub> -CHF <sub>2</sub>                              | 1100                      |
| R     | 134a     | 9611    | : 1,1,1,2-Tetrafluorethan                     | CF <sub>3</sub> -CH <sub>2</sub> F                              | 1430                      |
| R     | 143      | 9613    | : 1,1,2-Trifluorethan                         | CHF <sub>2</sub> -CH <sub>2</sub> F                             | 353                       |
| R     | 143a     | 9615    | : 1,1,1-Trifluorethan                         | CH <sub>3</sub> CF <sub>3</sub>                                 | 4470                      |
| R     | 152      | 9616    | : 1,2-Difluorethan                            | CH <sub>2</sub> F-CH <sub>2</sub> F                             | 53                        |
| R     | 152a     | 9617    | : 1,1-Difluorethan                            | CH <sub>3</sub> -CHF <sub>2</sub>                               | 124                       |
| R     | 161      | 9619    | : Fluorethan                                  | CH <sub>3</sub> -CH <sub>2</sub> F                              | 12                        |
| R     | 216      | 9510    | : Hexafluorcyclopropan                        | c-C <sub>3</sub> F <sub>6</sub>                                 | >17340                    |
| R     | 218      | 9511    | : Oktafluorpropan                             | C <sub>3</sub> F <sub>8</sub>                                   | 8830                      |
| R     | 227ea    | 9623    | : 1,1,1,2,3,3,3-Heptafluorpropan              | CF <sub>3</sub> CHFCF <sub>3</sub>                              | 3220                      |
| R     | 236cb    | 9627    | : 1,2,2,3,3,3-Hexafluorpropan                 | CH <sub>2</sub> FCF <sub>2</sub> CF <sub>3</sub>                | 1340                      |
| R     | 236ea    | 9629    | : 1,1,2,3,3,3-Hexafluorpropan                 | CHF <sub>2</sub> CHFCF <sub>3</sub>                             | 1370                      |
| R     | 236fa    | 9631    | : 1,1,1,3,3,3-Hexafluorpropan                 | CF <sub>3</sub> -CH <sub>2</sub> -CF <sub>3</sub>               | 9810                      |
| R     | 245ca    | 9633    | : 1,1,2,2,3-Pentafluorpropan                  | CHF <sub>2</sub> CF <sub>2</sub> CH <sub>2</sub> F              | 693                       |
| R     | 245fa    | 9637    | : 1,1,3,3,3-Pentafluorpropan ("Enovate")      | CHF <sub>2</sub> CH <sub>2</sub> CF <sub>3</sub>                | 1030                      |
| R     | 318      | 9512    | : Octafluorcyclobutan                         | c-C <sub>4</sub> F <sub>8</sub> ,                               | 10300                     |
| R     | 365mfc   | 9671    | : 1,1,1,3,3-Pentafluorbutan                   | CF <sub>3</sub> CH <sub>2</sub> CF <sub>2</sub> CH <sub>3</sub> | 794                       |
| R     | 1234yf   | 9673    | : 2,3,3,3,Tetrafluorprop-1-en ("Opteon YF")   | CH <sub>2</sub> =CF-CF <sub>3</sub>                             | 4                         |
| R     | 1234ze   | 9675    | : trans-1,3,3,3-Tetrafluorprop-1-en ("HBA-1") | CHF=CH-CF <sub>3</sub>                                          | 6                         |
| R     | 3-1-10   | 9516    | : Decafluorbutan                              | C <sub>4</sub> F <sub>10</sub>                                  | 8860                      |
| R     | 4-1-12   | 9521    | : Dodecafluorpentan                           | C <sub>5</sub> F <sub>12</sub>                                  | 9160                      |
| R     | 5-1-14   | 9526    | : Tetradecafluorhexan                         | C <sub>6</sub> F <sub>14</sub>                                  | 9300                      |
| R     | 9-1-18   | 9528    | : Perfluordecalin                             | C <sub>10</sub> F <sub>18</sub>                                 | >7500                     |
| R     | 1316     | 9529    | : Hexafluor-1,3-butadien                      | CF <sub>2</sub> =CF-CF=CF <sub>2</sub>                          | <1                        |

| R | lei | nd | s |
|---|-----|----|---|

| Stoff  |    | STKZ 1) | Chemische Bezeichnung / Handelsbezeichnung                                                                                             | Summenformel                                                                                                                                                                                                                 | CO2-<br>Äquivalente <sup>2)</sup> |
|--------|----|---------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| R 404  | IA | 9801    | : Suva HP 62 (Suva 404A), Reclin 404 A<br>Forane FX 70 (Forane 404A neu),<br>Meforex M 55; Solkane 404A,<br>Isceon 404 A, Klek ah 404A | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ):44%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 4%<br>R 143a (CH <sub>3</sub> CF <sub>3</sub> ): 52%                                                                          | 3922                              |
| R 407/ | 'A | 9804    | : Klea 407A (Klea60), Isceon 407 A,<br>Suva 407A                                                                                       | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 20%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 40%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F):40%                                                                            | 2107                              |
| R 4070 | 'C | 9810    | : Reclin 407C, HX3, Forane 407C,<br>Suva AC 9000 (Suva 407C),<br>Klea 407C (Klea 66), Meforex M 95,<br>Isceon 407 C, Solkane 407C      | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 23%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 25%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 52%                                                                           | 1774                              |
| R 4071 | 'D | 9811    | : Klea 407D                                                                                                                            | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 15%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 15%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 70%                                                                           | 1627                              |
| R 407f | 'F | 9814    | : Genetron Performax LT                                                                                                                | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 30%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 30%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 40%                                                                           | 1825                              |
| R 410  | )A | 9813    | : Genetron AZ 20, Solkane 410A,<br>Reclin 410, Suva 410A, Meforex M 98,<br>Klea 410A, Forane 410A                                      | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 50%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 50%                                                                                                                               | 2088                              |
| R 413/ | 3A | 9819    | : Isceon MO49                                                                                                                          | R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 88%<br>R 218 (C <sub>3</sub> F <sub>8</sub> ): 9%<br>R 600a (CH(CH <sub>3</sub> ) <sub>3</sub> ): 3%                                                                            | 2053                              |
| R 417/ | 'A | 9849    | : Isceon MO59                                                                                                                          | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 46,6%<br>R 134a (CH <sub>2</sub> -CF <sub>3</sub> F): 50%<br>R 600 (CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ): 3,4%                                      | 2346                              |
| R 417  | "B | 9850    | : Solkane 22L (Solvay)                                                                                                                 | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 79%<br>R 134a (CH <sub>2</sub> F <sub>3</sub> -CF <sub>3</sub> ): 18,3%<br>R 600 (CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ): 2,7%                        | 3027                              |
| R 422/ | 2A | 9866    | : Isceon MO79                                                                                                                          | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 85,1%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 11,5%<br>R 600a (CH(CH <sub>3</sub> ) <sub>3</sub> ): 3,4%                                                                 | 3143                              |
| R 422I | 2D | 9867    | : Isceon MO29                                                                                                                          | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 65,1%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 31,5%<br>R 600a (CH(CH <sub>3</sub> ) <sub>3</sub> ): 3,4%                                                                 | 2729                              |
| R 423  | 3A | 9802    | : Isceon 39TC                                                                                                                          | R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 52,5%<br>R 227ea (CF <sub>3</sub> CHFCF <sub>3</sub> ): 47,5%                                                                                                                   | 2280                              |
| R 427/ | 'A | 9840    | : Forane FX100 (Forane 427A)                                                                                                           | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 15%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 25%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 50%<br>R 143a (CH <sub>3</sub> CF <sub>3</sub> ): 10%                         | 2138                              |
| R 428/ | JA | 9844    | : RS-52                                                                                                                                | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 77,5%<br>R 143a (CH <sub>3</sub> CF <sub>3</sub> ): 20%<br>R 290 (CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>3</sub> ): 0,6%<br>R 600a (CH(CH <sub>3</sub> ) <sub>3</sub> ): 1,9% | 3607                              |
| R 434/ | AA | 9845    | : RS-45                                                                                                                                | R 125 (CHF $_2$ -CF $_3$ ): 63,2%<br>R 143a (CH $_3$ CF $_3$ ): 18%<br>R 134a (CF $_3$ -CH $_2$ F): 16%<br>R 600a (CH(CH $_3$ ) $_3$ ): 2,8%                                                                                 | 3245                              |

#### Bestimmte klimawirksame Stoffe und deren Blends

| Stoff |                               | STKZ <sup>1)</sup> | Chemische Bezeichnung / Handelsbezeichnung                                                     | Summenformel                                                                                                                                                                                                                                                                                                                   | CO2-<br>Äquivalente <sup>2)</sup> |
|-------|-------------------------------|--------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| R     | 437A                          | 9841               | : Isceon MO49Plus                                                                              | R 125 (CHF <sub>2</sub> ·CF <sub>3</sub> ): 19,5%<br>R 134a (CF <sub>3</sub> ·CH <sub>2</sub> F): 78,5%<br>R 600 (CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ): 1,4%<br>R 601(CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ): 0,6%                                     | 1805                              |
| R     | 438A                          | 9842               | : Isceon MO99                                                                                  | R 32 (CH <sub>2</sub> F <sub>2</sub> ): 8.5%<br>R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 45%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 44.2%<br>R 600 (CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ): 1.7%<br>R 601a (CH <sub>3</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub> ): 0.6% | 2264                              |
| R     | 507                           | 9822               | : Suva 507, AZ 50, Solkane507,<br>Klea 507,Reclin 507, Forane 507,<br>Meforex M 57, Isceon 507 | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 50%<br>R 143a (CH <sub>3</sub> CF <sub>3</sub> ): 50%                                                                                                                                                                                                                              | 3985                              |
| R     | 508A                          | 9825               | : Klea 508A (R5R3)                                                                             | R 23 (CHF <sub>3</sub> ): 39%<br>R 116 (C <sub>2</sub> F <sub>6</sub> ): 61%                                                                                                                                                                                                                                                   | 13214                             |
| R     | 508B                          | 9828               | : Suva 95                                                                                      | R 23 (CHF <sub>3</sub> ): 46%<br>R 116 (C <sub>2</sub> F <sub>6</sub> ): 54%                                                                                                                                                                                                                                                   | 13396                             |
| R     | Isceon 89                     | 9846               | : Isceon MO89                                                                                  | R 125 (CHF <sub>2</sub> -CF <sub>3</sub> ): 86%<br>R 218 (C <sub>3</sub> F <sub>8</sub> ): 9%<br>R 290 (H <sub>3</sub> C-CH <sub>2</sub> -CH <sub>3</sub> ): 5%                                                                                                                                                                | 3805                              |
| R     | 1234yf/<br>R 134a Gemisch     | 9870               | : Opteon XP 10                                                                                 | R 1234yf (CH <sub>2</sub> =CF-CF <sub>3</sub> ): 54%<br>R 134a (CF <sub>3</sub> -CH <sub>2</sub> F): 46%                                                                                                                                                                                                                       | 660                               |
|       | 365 mfc/<br>R 227ea Gemisch 1 | 9862               | : Solkane 365/227 93/7                                                                         | R 227ea (CF <sub>3</sub> CHFCF <sub>3</sub> ): 7%<br>R 365 mfc (CF <sub>3</sub> CH <sub>2</sub> CF <sub>2</sub> CH <sub>3</sub> ): 93%                                                                                                                                                                                         | 964                               |
|       | 365 mfc/<br>R 227ea Gemisch 2 | 9863               | : Solkane 365/227 87/13                                                                        | R 227ea (CF <sub>3</sub> CHFCF <sub>3</sub> ): 13%<br>R 365 mfc (CF <sub>3</sub> CH <sub>2</sub> CF <sub>2</sub> CH <sub>3</sub> ): 87%                                                                                                                                                                                        | 1109                              |

CO<sub>2</sub>-Äquivalente-Faktor: Treibhauspotenzial eines Stoffes entsprechend der gleichen Menge (Masse) CO<sub>2</sub>-Kohlenstoffdioxid CO<sub>2</sub>-Äquivalente-Faktor = 1 STKZ:Stoffkennziffer

Drucken

Stand: März 2014

CO2-Äquivalente nach IPCC 2007: laut Beschlüssen in Durban verbindlich gültig ab dem Berichtsjahr 2013 für die Emissionsberichterstattung (Post-Krypto): (Quelle: IPCC 4th Assessment Report, Climate CDhange 2007)

### **Impressum**

Herausgeber: Statistisches Landesamt Rheinland-Pfalz Mainzer Straße 14-16 56130 Bad Ems

Telefon: 02603 71-0 Telefax: 02603 71-3150

E-Mail: poststelle@statistik.rlp.de Internet: www.statistik.rlp.de

Kostenfreier Download im Internet: http://www.statistik.rlp.de/veroeffentlichungen/statistische-berichte

© Statistisches Landesamt Rheinland-Pfalz·Bad Ems·2014

Vervielfältigung und Verbreitung, auch auszugsweise, mit Quellenangabe gestattet.