## Öffentliche Wassergewinnung und Qualität des Grund- und Quellwassers in den Grundwasserlandschaften Baden-Württembergs

Wasser ist eine erneuerbare Ressource, die nach ihrer Nutzung mehr oder weniger verschmutzt oder erwärmt in den natürlichen Kreislauf zurückgeführt wird. Als nachhaltig gilt seine Inanspruchnahme dann, wenn nachfolgenden Generationen ausreichend große und qualitativ hochwertige Wasservorräte zur Verfügung stehen. Dies erfordert, die Nutzung der Wasservorräte schonend zu gestalten. Die Erhebung des Statistischen Landesamtes liefert unter Anwendung des geographischen Informationssystems Daten über Menge und Qualität des im Rahmen der öffentlichen Wasserversorgung gewonnenen Grund- und Quellwassers in den Grundwasserlandschaften Baden-Württembergs und damit Aussagen über die Beanspruchung des nutzbaren Wasserdargebotes unter Berücksichtigung der unterschiedlichen hydrogeologischen Gegebenheiten im Land. Im folgenden Beitrag werden die Gewinnung von Wasser zur öffentlichen Wasserversorgung und dessen Beschaffenheit in den Hydroregionen Baden-Württembergs dargestellt. Anhand von 932 öffentlichen Wassergewinnungsanlagen, die von 1987 bis 1995 in Betrieb waren, wird die Entwicklung der Nitratbelastung des dort gewonnenen Grund- und Quellwassers besonders betrachtet.

## Die hydrogeologische Gliederung Baden-Württembergs

Die hydrologischen Verhältnisse werden jeweils durch die vorhandenen geologisch-morphologischen Eigenschaften be-

dingt, die das Ablaufen des Niederschlagswassers und die Eigenschaften des Grundwassers bestimmen. Kriterien zur Abgrenzung der Grundwasserlandschaften bestehen daher vor allem in der Ausbildung der Gesteine, der Art der Grundwasserleiter, den geohydraulischen Gegebenheiten, der Beschaffenheit der Grundwässer und ihrer Empfindlichkeit gegen anthropogene Belastungen. Baden-Württemberg gliedert sich danach in 13 Grundwasserlandschaften (Schaubild 1) mit stark abweichenden hydrologischen Eigenschaften. Diese Hydroregionen sind ihrer Entstehung nach unterschiedlichen erdgeschichtlichen Epochen zuzuordnen und unterscheiden sich auch hinsichtlich ihrer flächenmäßigen Ausdehnung. So bilden die Grundgebirgsbereiche (Kristallin) im Schwarzwald, Odenwald und Kaiserstuhl eine Grundwasserlandschaft, die etwa ein Zehntel der Landesfläche ausmacht. Die dort vorkommenden Gesteine, wie Gneise und Granite,

weisen eine relativ geringe Wasserspeicherkapazität auf.

Weiterhin sind Formationen aus Trias und Jura in Baden-Württemberg flächenmäßig bedeutsam. Buntsandstein (Schwarzwald, Odenwald) sowie Muschelkalk und Lettenkeuper (Gäugebiete, Hohenloher Ebene, Tauberland) sind die prägenden Gesteine des Trias. Der Abfluß von Niederschlägen erfolgt im Buntsandstein vorwiegend oberflächig. Der mehr oder minder verkarstete Untergrund im Muschelkalk verursacht dagegen deren rasche Versickerung und das Entstehen von Karstquellen. In den Keupergesteinen des schwäbischfränkischen Stufenlandes vom Schurwald, dem Welzheimer Wald, den Löwensteiner und Waldenburger bis hin zu den Ellwanger Bergen finden sich ebenfalls viele kleine Quellen. Dagegen stellt das von Lias- und Doggerschichten geprägte Gebiet des Albvorlandes ein Grundwassermangelgebiet dar.

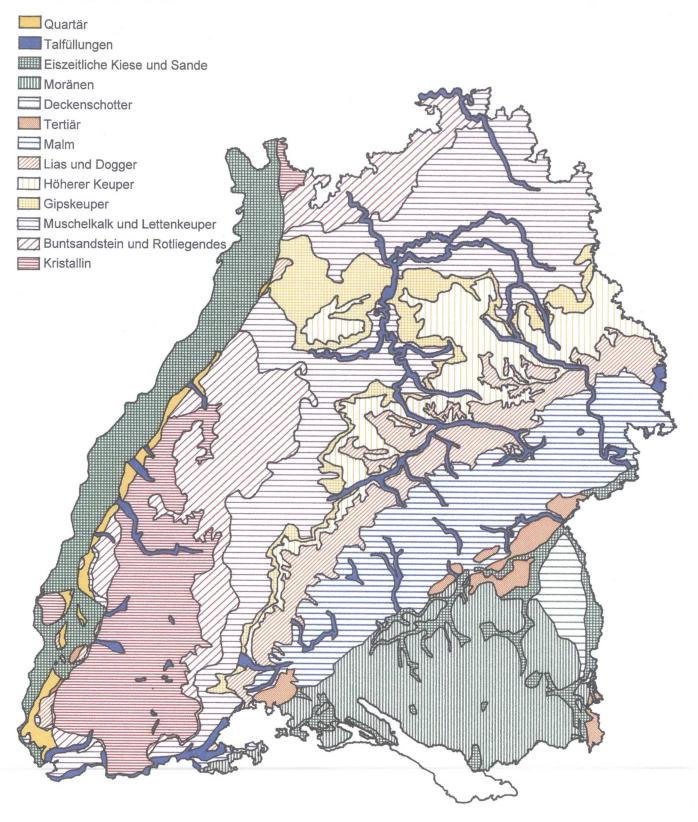
Das Malmgebiet der Schwäbischen Alb weist eine starke Verkarstung auf. Niederschläge dringen deshalb schnell und tief in den Untergrund ein und fließen unterirdisch ab. Die eiszeitlichen Kiese und Sande im Rheingraben sowie Moränen und Deckenschotter, die im Quartär entstanden, sind vornehmlich

im südlichen Regierungsbezirk Tübingen und in der Rheinebene die Grundlage für das dortige gute Wasserdargebot. Die oben grob charakterisierten Grundwasserlandschaften gliedern sich ihrerseits in eine Anzahl von Teillandschaften, die hier jedoch nicht berücksichtigt wurden.

Mit Hilfe der vorliegenden Betrachtungen soll die quantitative Inanspruchnahme der Grund- und Quellwasservorkommen in den Hydroregionen durch die öffentliche Wasserversorgung und den gewerblichen und industriellen Bereich beschrieben werden. Für die öffentliche und gewerbliche/industrielle Wasserwirtschaft liegen Daten aus der amtlichen Statistik vor. die seit 1975 (zuletzt für 1995) gemäß dem Umweltstatistikgesetz von 1980 erhoben wurden. Im Bereich der öffentlichen Wasserversorgung wurden alle zwei Jahre im Rahmen einer landesspezifischen Erhebung zusätzliche Daten ermittelt. Über

die Wassergewinnung im landwirtschaftlichen Bereich gibt es derzeit noch keine Informationen. Ab 1998 ist jedoch eine derartige Erhebung vorgesehen.




Die Autorin: Dipl.-Ing. agr. Steffi Krenzke ist Referentin im Referat "Umweltbeobachtung, Ökologie, Umweltökonomische Gesamtrechnungen" des Statistischen Landesamts Baden-Württemberg.

## 7,2 Milliarden Kubikmeter Grund- und Oberflächenwasser gewonnen

Im Jahr 1995 wurden in Baden-Württemberg insgesamt ca. 7,2 Mrd. m³ Grund- und Oberflächenwasser gewonnen und als Trink-, Kühl-, Brauch- und Produktionswasser genutzt. Anschließend wurde es wieder in den Naturkreislauf zurückgeführt. Mehr als 80 % dieses Gesamtaufkommens entfielen dabei auf die Energiewirtschaft, wo es hauptsächlich als Kühlwasser Verwendung fand. Knapp 10 % wurden im Rahmen

### Hydrogeologische Karte von Baden-Württemberg

### Grundwasserlandschaften



Statistisches Landesamt Baden-Württemberg

der öffentlichen Wasserversorgung gewonnen und etwa 8 % durch Betriebe des Verarbeitenden Gewerbes, des Bergbaus und der Gewinnung von Steinen und Erden.

Die wasserwirtschaftlichen Daten beziehen sich generell auf die Standorte der öffentlichen und industriellen Wassergewinnungsanlagen. Um diese in der Gliederung nach Hydroregionen darstellen zu können, wurden die öffentlichen Gewinnungsanlagen mit Hilfe des geographischen Informationssystems (GIS) den einzelnen Grundwasserlandschaften zugeordnet.¹ Die Gewinnungsanlagen im industriellen Bereich wurden über den Betriebsstandort regional zugeordnet. Die Gewinnung von Grund- und Quellwasser durch Industrie (einschließlich Energiewirtschaft) und öffentliche Versorgungsun-

ternehmen betrug 1995 zusammen rund 728 Mill. m³. Über 70 % davon (rund 532 Mill. m³) entfielen auf die öffentliche Trinkwasserversorgung, die somit Hauptnutzer der Grundwasserressourcen ist.

Für die öffentliche Versorgung wurden in Baden-Württemberg 1995 insgesamt ca. 706 Mill. m³ Wasser gewonnen. Drei Viertel des Wasseraufkommens der öffentlichen Wasserversorger waren der Herkunft nach Grund- und Quellwasser (532 Mill. m³) und knapp ein Viertel Oberflächenwasser. Annähernd 40 % (205 Mill. m³) des für die öffentliche Wasserversorgung gewonnenen Grund- und Quellwassers wurden dabei allein in den eiszeitlichen Kiesen und Sanden des Oberrheingrabens gefördert (Tabelle 1). Weitere 14 % entstammten der Grundwasserlandschaft des Malm (75,9 Mill. m³). Dies widerspricht auf den ersten Blick der Charakterisierung der Schwäbischen Alb als Wassermangelgebiet. Infolge der starken Verkarstung dringen die Niederschläge tatsächlich rasch und vollständig in den Untergrund ein, treten jedoch als schüttungs-

Tabelle 1 Öffentliche Wassergewinnung in den Grundwasserlandschaften Baden-Württembergs 1991 bis 1995 nach Wasserarten

| Grundwasserlandschaft                         |                      | Fläche <sup>1)</sup>       |                   | Gewonnene               | Dav                       | Spezifische       |                              |
|-----------------------------------------------|----------------------|----------------------------|-------------------|-------------------------|---------------------------|-------------------|------------------------------|
|                                               | Jahr                 |                            |                   | Wassermenge             | Grundwasser <sup>2)</sup> | Quellwasser       | Wassergewinnung<br>insgesamt |
|                                               |                      | ha                         | %                 |                         | 1 000 m³                  |                   | m³/ha                        |
| nsgesamt                                      | 1991                 | 3 574 138                  | 100               | 565 359                 | 403 668                   | 161 691           | 158                          |
|                                               | 1993                 | 3 574 139                  | 100               | 540 018                 | 383 300                   | 156 718           | 151                          |
|                                               | 1995                 | 3 574 139                  | 100               | 532 374                 | 368 645                   | 163 729           | 149                          |
| Davon<br>Quartär/mächtiger Löß                | 1991<br>1993<br>1995 | 42 140<br>42 140<br>42 140 | 1,2<br>1,2<br>1,2 | 2 947<br>2 640<br>2 537 | 2 218<br>1 921<br>1 723   | 729<br>719<br>814 | 70<br>63<br>60               |
| 「alfüllungen                                  | 1991                 | 162 783                    | 4,6               | 32 611                  | 23 452                    | 9 159             | 200                          |
|                                               | 1993                 | 162 783                    | 4,6               | 31 327                  | 22 547                    | 8 780             | 192                          |
|                                               | 1995                 | 162 783                    | 4,6               | 31 144                  | 21 616                    | 9 528             | 191                          |
| iszeitliche Kiese und Sande                   | 1991                 | 368 167                    | 10,3              | 220 327                 | 218 743                   | 1 584             | 598                          |
|                                               | 1993                 | 368 167                    | 10,3              | 208 118                 | 206 829                   | 1 289             | 565                          |
|                                               | 1995                 | 368 167                    | 10,3              | 205 291                 | 203 152                   | 2 139             | 558                          |
| Moränen                                       | 1991                 | 380 680                    | 10,7              | 34 255                  | 21 169                    | 13 086            | 90                           |
|                                               | 1993                 | 380 680                    | 10,7              | 33 835                  | 21 267                    | 12 568            | 89                           |
|                                               | 1995                 | 380 680                    | 10,7              | 32 524                  | 19 920                    | 12 604            | 85                           |
| Deckenschotter über obere<br>Süßwassermolasse | 1991<br>1993<br>1995 | 50 214<br>50 214<br>50 214 | 1,4<br>1,4<br>1,4 | 1 870<br>1 778<br>1 710 | 1 333<br>1 260<br>1 221   | 537<br>518<br>489 | 37<br>35<br>34               |
| ertiär                                        | 1991                 | 60 785                     | 1,7               | 5 256                   | 4 776                     | 480               | 86                           |
|                                               | 1993                 | 60 785                     | 1,7               | 5 206                   | 4 793                     | 413               | 86                           |
|                                               | 1995                 | 60 785                     | 1,7               | 5 015                   | 4 783                     | 232               | 83                           |
| Malm                                          | 1991                 | 434 468                    | 12,2              | 83 011                  | 36 288                    | 46 723            | 191                          |
|                                               | 1993                 | 434 468                    | 12,2              | 79 055                  | 34 754                    | 44 301            | 182                          |
|                                               | 1995                 | 434 468                    | 12,2              | 75 901                  | 31 351                    | 44 550            | 175                          |
| ias und Dogger                                | 1991                 | 252 931                    | 7,1               | 10 961                  | 6 118                     | 4 843             | 43                           |
|                                               | 1993                 | 252 931                    | 7,1               | 11 049                  | 5 513                     | 5 536             | 44                           |
|                                               | 1995                 | 252 931                    | 7,1               | 11 402                  | 5 373                     | 6 029             | 45                           |
| Höherer Keuper                                | 1991                 | 258 432                    | 7,2               | 20 292                  | 11 856                    | 8 436             | 79                           |
|                                               | 1993                 | 258 432                    | 7,2               | 20 233                  | 10 983                    | 9 250             | 78                           |
|                                               | 1995                 | 258 432                    | 7,2               | 19 611                  | 9 896                     | 9 715             | 76                           |
| Gipskeuper                                    | 1991                 | 192 908                    | 5,4               | 14 791                  | 11 868                    | 2 923             | 77                           |
|                                               | 1993                 | 192 908                    | 5,4               | 13 956                  | 10 868                    | 3 088             | 72                           |
|                                               | 1995                 | 192 908                    | 5,4               | 14 168                  | 10 096                    | 4 072             | 73                           |
| Muschelkalk und Lettenkeuper .                | 1991                 | 648 028                    | 18,1              | 62 929                  | 35 672                    | 27 257            | 97                           |
|                                               | 1993                 | 648 028                    | 18,1              | 59 317                  | 33 623                    | 25 694            | 92                           |
|                                               | 1995                 | 648 028                    | 18,1              | 57 730                  | 32 452                    | 25 278            | 89                           |
| luntsandstein und Rotliegendes                | 1991                 | 364 667                    | 10,2              | 41 708                  | 13 922                    | 27 786            | 114                          |
|                                               | 1993                 | 364 667                    | 10,2              | 39 402                  | 12 697                    | 26 705            | 108                          |
|                                               | 1995                 | 364 667                    | 10,2              | 39 286                  | 11 819                    | 27 467            | 108                          |
| Kristallin                                    | 1991                 | 357 935                    | 10,0              | 34 401                  | 16 253                    | 18 148            | 96                           |
|                                               | 1993                 | 357 935                    | 10,0              | 34 102                  | 16 245                    | 17 857            | 95                           |
|                                               | 1995                 | 357 935                    | 10,0              | 36 055                  | 15 243                    | 20 812            | 101                          |

<sup>&</sup>lt;sup>1)</sup> Gemeinden, die mehrere Grundwasserlandschaften überdecken, wurden entsprechend den Anteilen an der Gemeindefläche den Grundwasserlandschaften zugeordnet. – <sup>2)</sup> Einschließlich Uferfiltrat.

Baden-Württemberg in Wort und Zahl 11/97 515

<sup>&</sup>lt;sup>1</sup> Vgl. Büringer, Helmut: Die Wassergewinnung in den hydrogeologischen Räumen Baden-Württembergs, in: Baden-Württemberg in Wort und Zahl, Heft 12/1995.

Tabelle 2
Nitratgehalt des gewonnenen Grund- und Quellwassers in den Grundwasserlandschaften Baden-Württembergs 1995

|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gewonnene Wasser-    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Davon in der Konzentrationsgrößenklasse<br>von bis unter mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| menge insgesamt      | ratgenait                                                                                                       | unter 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 – 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50" und mehr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1 000 m <sup>3</sup> | %                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 532 374              | 528 714                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2 537                | 2 537                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 31 144               | 30 775                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 205 291              | 204 977                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 32 524               | 32 490                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1 710                | 1 710                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 5 015                | 5 015                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 75 901               | 75 873                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 11 402               | 11 230                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 19 611               | 19 596                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14 168               | 13 990                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 57 730               | 57 220                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 39 286               | 37 700                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 36 055               | 35 601                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                      | 1 000 m <sup>3</sup> 532 374  2 537 31 144 205 291 32 524 1 710 5 015 75 901 11 402 19 611 14 168 57 730 39 286 | menge insgesamt         zum Nitt           1 000 m³         528 714           532 374         528 714           2 537         2 537           31 144         30 775           205 291         204 977           32 524         32 490           1 710         1 710           5 015         5 015           75 901         75 873           11 402         11 230           19 611         19 596           14 168         13 990           57 730         57 220           39 286         37 700 | menge insgesamt         zum Nitratgehalt           1 000 m³           532 374         528 714         100           2 537         2 537         100           31 144         30 775         100           205 291         204 977         100           32 524         32 490         100           1 710         1710         100           5 015         5 015         100           75 901         75 873         100           11 402         11 230         100           19 611         19 596         100           14 168         13 990         100           57 730         57 220         100           39 286         37 700         100 | Gewonnene Wassermenge insgesamt         Darunter mit Angabe zum Nitratgehalt         volum 1           1 000 m³         1 000 m³         1 000 m³           532 374         528 714         100         67,3           2 537         2 537         100         74,0           31 144         30 775         100         77,0           205 291         204 977         100         67,5           32 524         32 490         100         55,7           1 710         1710         100         14,7           5 015         5 015         100         52,3           75 901         75 873         100         68,5           11 402         11 230         100         80,9           19 611         19 596         100         74,6           14 168         13 990         100         32,3           57 730         57 220         100         33,8           39 286         37 700         100         97,9 | Gewonnene Wassermenge insgesamt         Darunter mit Angabe zum Nitratgehalt         von bis unter           1 000 m³         %           532 374         528 714         100         67,3         29,7           2 537         2 537         100         74,0         19,4           31 144         30 775         100         77,0         22,1           205 291         204 977         100         67,5         28,6           32 524         32 490         100         55,7         42,1           1 710         1 710         100         14,7         85,2           5 015         5 015         100         52,3         47,7           75 901         75 873         100         68,5         31,3           11 402         11 230         100         80,9         16,8           19 611         19 596         100         74,6         25,0           14 168         13 990         100         32,3         54,3           57 730         57 220         100         33,8         58,5           39 286         37 700         100         97,9         2,1 |  |

<sup>&</sup>lt;sup>11</sup> Grenzwert laut Trinkwasserverordnung vom 5. Dezember 1990.

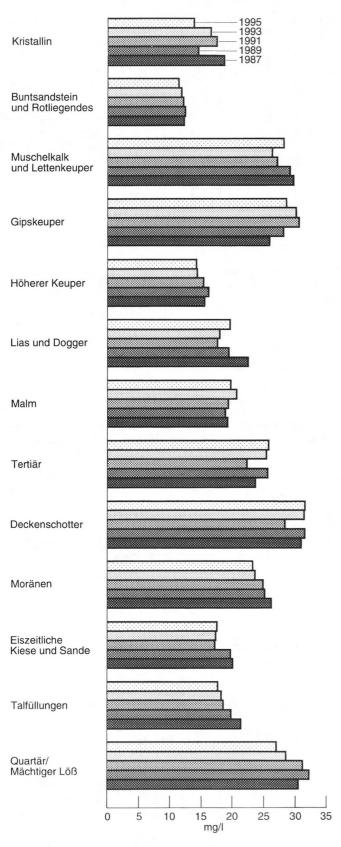
starke Karstquellen aus einem ausgedehnten Hohlraumsystem von Spalten und Klüften wieder zutage. Knapp 11 % des öffentlichen Grundwasseraufkommens wurden im Muschelkalk und Lettenkeuper (57,7 Mill. m³) gewonnen. Weiterhin waren Buntsandstein und Rotliegendes, Kristallin, Moränen und Talfüllungen von Bedeutung, während trotz beträchtlicher flächenmäßiger Ausdehnung Keuper, Lias und Dogger nur verhältnismäßig wenig zur Wasserversorgung beitrugen.

Zur Darstellung der Inanspruchnahme des Grundwasserdargebots einer Hydroregion kann der sogenannte Wassergewinnungsindex herangezogen werden (Tabelle 1). Dieser zeigt das Verhältnis von gewonnener Wassermenge pro Jahr zur Fläche des Gebietes in Kubikmeter je Hektar (m³/ha). Hierbei wird ebenfalls die herausragende Bedeutung der eiszeitlichen Kiese und Sande im Rheingraben für die öffentliche Wasserversorgung deutlich. Die spezifische Wassergewinnung in dieser Grundwasserlandschaft betrug im Jahr 1995 rund 558 m³/ha. Mit 191 und 175 m³/ha wurden auch die Grundwasservorräte in den Regionen der Talfüllungen und des Malm stark beansprucht. Deckenschotter sowie Lias und Dogger wiesen indes mit 34 bzw. 45 m³/ha eine recht geringe spezifische Wassergewinnung auf.

Die Nutzung der Wasservorräte in den Hydroregionen hat seit 1991 insgesamt um knapp 33 Mill. m³ abgenommen. In den eiszeitlichen Kiesen und Sanden nahmen die Wasserentnahmen um ca. 15 Mill. m³ (-6,8 %), im Malm um rund 7 Mill. m³ (-8,6%), im Muschelkalk und Lettenkeuper um etwa 5 Mill. m³ (-8,3%) und im Buntsandstein und Rotliegenden um 2,4 Mill. m³ (-5,8 %) ab. Im Kristallin wurden im Unterschied dazu 1,6 Mill. m³ (+ 4,8 %) mehr Wasser als 1991 gefördert. In fast allen Hydroregionen war vor allem die Gewinnung von Grundwasser rückläufig. In neun Hydroregionen erfuhr demgegenüber die Nutzung von Quellwasser, zumindest im Vergleich zu 1993, eine Steigerung. So wurde im Kristallin die Förderung von Grundwasser um etwa 1 Mill. m³ reduziert, die Gewinnung von Quellwasser wurde dagegen um rund 2,6 Mill. m³ gesteigert. Die Bedeutung der einzelnen Grundwasserlandschaften für die Versorgung der Bevölkerung mit Trinkwasser ist im großen und ganzen jedoch unverändert geblieben.

Von den Industriebetrieben (einschließlich Energiewirtschaft) wurden 1995 rund 199 Mill. m<sup>3</sup> Grund- und Quellwasser, eben-

falls vorwiegend in den Grundwasserlandschaften der eiszeitlichen Kiese und Sande im Rheintal und den Talfüllungen, gewonnen. Rund 70 % des gesamten Wasseraufkommens der Industrie entfielen auf diese beiden Hydroregionen. Aufgrund besonders günstiger Standortbedingungen insbesondere für wasserintensive Branchen wie chemische Industrie und Papierherstellung, die sowohl auf ein gutes Grundwasserdargebot als auch auf das Vorhandensein erheblicher Mengen Oberflächenwasser (1995 insgesamt rund 6,2 Mrd. m³ Oberflächenwassergewinnung, davon 5,8 Mrd. m³ durch die Energiewirtschaft) angewiesen sind, konzentrierte sich die Gewinnung von Grund- und Quellwasser durch die Industrie auf die eiszeitlichen Kiese und Sande und die Talfüllungen. Von den übrigen Hydroregionen war lediglich der Muschelkalk für die Industrie von Bedeutung.


### Beschaffenheit des gewonnenen Wassers

Neben quantitativen Aspekten hat die amtliche Statistik auch die Beschaffenheit des von den öffentlichen Wasserversorgungsunternehmen gewonnenen Wassers zum Inhalt. Die Angaben zur Beschaffenheit des gewonnenen Grund- und Quellwassers gehen auf die von den öffentlichen Wasserversorgungsunternehmen zur Verfügung gestellten Analysen zurück, die sich auf das nicht durch Aufbereitung, Behandlung oder Mischung veränderte Rohwasser zum Zeitpunkt der Gewinnung beziehen. Zur Beurteilung der Wasserqualität werden die für das Trinkwasser geltenden Grenzwerte der Trinkwasserverordnung von 1990 angelegt.

Im Mittelpunkt der Betrachtung der Qualität des gewonnenen Wassers steht in erster Linie Nitrat (NO<sub>3</sub>). Belastungen mit Nitrat sind bekanntlich vorwiegend anthropogenen Ursprungs. Die wichtigsten Quellen sind Nitratauswaschung aus landwirtschaftlichen Flächen und der Stickstoffeintrag aus der Luft. Dabei ist ein tendenzieller Rückgang des unmittelbar durch die Landwirtschaft verursachten Nitrataustrags aus Agrarflächen zu beobachten. Emissionen von Ammoniak aus der Viehhaltung, Kläranlagen und Mülldeponien sowie von bei Verbrennungsvorgängen anfallenden Stickoxiden (im wesentlichen NO und NO<sub>2</sub>), die in Form von Ammonium und Nitrat zurück auf die Erdoberfläche und häufig auch in das Grundwasser

Schaubild 2

# Mittelwert der Nitratkonzentration im gewonnenen Grund- und Quellwasser\*) in den Hydroregionen Baden-Württembergs 1987 bis 1995



<sup>\*)</sup> Einbezogen sind 932 Anlagen, die von 1987 bis 1995 in Betrieb waren.

Statistisches Landesamt Baden-Württemberg

363 97

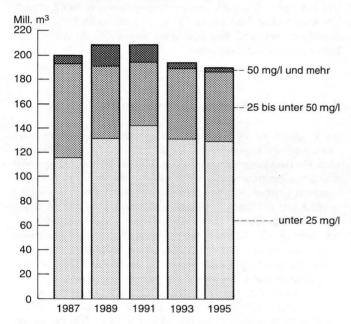
gelangen, nehmen jedoch zu. Obwohl für den Bereich der industriellen Wassergewinnung keine entsprechenden Daten vorliegen, vermitteln die vorhandenen Angaben zur Wasserqualität jedoch eine Vorstellung von den natürlichen (geogenen) und den vom Menschen verursachten (anthropogenen) Einflüssen auf die Grundwasserbeschaffenheit in den unterschiedlichen Hydroregionen.

Landesweit lag der gewogene Mittelwert der Nitratkonzentration im gewonnenen Grund- und Quellwasser der öffentlichen Wasserversorgungsunternehmen im Jahr 1995 bei 19 mg NO $_3$ /l. 67 % dieses Wassers enthielten weniger als 25 mg Nitrat je Liter, 3 % allerdings 50 mg NO $_3$ /l (Grenzwert der Trinkwasserverordnung) und mehr. Dabei lagen für den Parameter Nitrat Angaben zu annähernd 100 % der gewonnenen Wassermenge vor

Hohe Nitratkonzentrationen traten in erster Linie in den Grundwasserlandschaften des Deckenschotter, des Gipskeuper sowie des Muschelkalk und Lettenkeuper auf (*Tabelle 2*). Die Formation des Deckenschotter trägt zwar in geringem Umfang zur Wassergewinnung bei, weist aber die höchsten Nitratwerte auf. Unterhalb des landesweiten Mittelwertes von 19 mg Nitrat pro Liter liegen die Durchschnittswerte der Talfüllungen, der eiszeitlichen Kiese und Sande, des Höheren Keuper, von Buntsandstein und Rotliegendem sowie im Kristallin von Schwarzwald und Odenwald.

### Entwicklung der Nitratkonzentration

Im Vergleich zu 1987 ging der Nitratgehalt im gewonnenen Rohwasser im Landesmittel von 21 mg/l auf 19 mg/l Nitrat zurück. Da Gewinnungsanlagen mit schlechterer Wasserqualität allerdings bevorzugt stillgelegt oder in ihrem Förderumfang reduziert werden, können daraus nur bedingt Aussagen zum qualitativen Zustand der Wasservorkommen insgesamt abgeleitet werden. So wurden in den Jahren 1993 und 1994 beispielsweise 104 Anlagen, zum Teil auch nur Einzelbrunnen oder -quellen von Gewinnungsanlagen stillgelegt. Fast zwei Drittel dieser Anlagen wurden aufgrund von Qualitätsmängeln stillgelegt. Hauptursachen dafür waren Belastungen durch Mikroorganismen und/oder Nitrat. Das übrige Drittel wurde vorwiegend aus wirtschaftlichen Gründen (zu geringe Schüttung) oder wegen technischer bzw. baulicher Mängel außer Betrieb genommen. Es handelte sich dabei zu über 70 % um kleinere Anlagen, mit einer durchschnittlichen Jahresfördermenge von bis zu 50 000 m<sup>3</sup>.


932 der insgesamt 2 540 öffentlichen Gewinnungsanlagen waren jedoch von 1987 bis 1995 in Betrieb und legten regelmäßig Angaben zu den Nitratgehalten im gewonnenen Rohwasser vor. Diese Anlagen wurden für einen langjährigen Vergleich der Nitratkonzentration im dort gewonnenen Wasser herangezogen. Zusammen betrug deren Gesamtgewinnung 1995 rund 333 Mill. m³ Grund- und Quellwasser. Damit repräsentieren diese Anlagen bei der folgenden Betrachtung mehr als 60 % des gesamten Grund- und Quellwasseraufkommens der öffentlichen Wasserversorgung.

Der weitaus größte Teil (mit 190 Mill. m³ rund 57 %) des durch diese Gewinnungsanlagen geförderten Wassers stammte 1995 wiederum aus der Grundwasserregion der eiszeitlichen Kiese und Sande, knapp 9 % (29,3 Mill. m³) aus der des Muschelkalk und Lettenkeuper und rund 7 % (24,3 Mill. m³) aus dem Malm.

Der gewogene mittlere Nitratgehalt des durch diese 932 Anlagen geförderten Wassers ging gegenüber 1987 von 21 mg/l auf 19 mg/l im Jahr 1991 zurück und blieb seither gleich. 1995 enthielten 69 % (230 Mill. m³) dieses Wassers weniger als 25 mg NO<sub>3</sub>/l und knapp 2 % (6 Mill. m³) lagen oberhalb des Grenzwertes von 50 mg/l Nitrat. Im Jahr 1987 wiesen im Vergleich dazu knapp 63 % des durch die 932 Vergleichsanlagen gewonnenen Rohwassers (226 Mill. m³) Nitratgehalte unter 25 mg/l und 3 % (11,7 Mill.·m³) Werte von 50 mg/l Nitrat und mehr auf. Es zeigt sich demnach insgesamt eine rückläufige Tendenz der mittleren Nitratkonzentration im gewonnenen Grund- und Quellwasser, bezogen auf die einzelnen Grundwasserlandschaften zeichnen sich in der Entwicklung der Nitratwerte allerdings erkennbare Unterschiede ab (Schaubild 2).

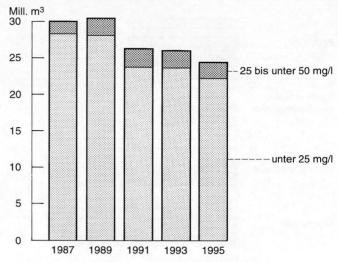
### Schaubild 3

# Nitratgehalt im gewonnenen Wasser\*) in eiszeitlichen Kiesen und Sanden in Baden-Württemberg 1987 bis 1995 nach Konzentrationsgrößenklassen



\*) Einbezogen sind 932 Anlagen, die von 1987 bis 1995 in Betrieb waren.

Statistisches Landesamt Baden-Württemberg


### Regional unterschiedliche Entwicklung

68 % des 1995 in eiszeitlichen Kiesen und Sanden geförderten Wassers enthielten weniger als 25 mg/l Nitrat (Schaubild 3). Dieser Anteil nahm im Vergleich mit 1987 zwar zu, lag in den Zwischenjahren jedoch schon höher. Der Wasseranteil mit einem Nitratgehalt von 50 mg NO<sub>3</sub>/l und darüber nahm gegenüber dem Ende der 80er Jahre deutlich ab. Der mittlere Nitratwert war hier ebenfalls eindeutig rückläufig (Tabelle 3).

Im Malm (91 %), im Höheren Keuper (92 %), im Buntsandstein (97 %) und Kristallin (94 %) wies 1995 der weitaus überwiegende Teil der geförderten Wassermenge einen Nitratgehalt von unter 25 mg NO<sub>3</sub>/I auf (Schaubild 4). Im Muschelkalk, Dekkenschotter und Gipskeuper lagen die Nitratgehalte hauptsächlich über 25 mg NO<sub>3</sub>/I (Schaubild 5).

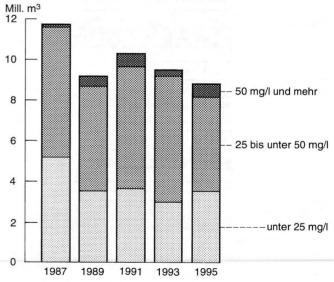
#### Schaubild 4

### Nitratgehalt im gewonnenen Wasser\*) im Malm in Baden-Württemberg 1987 bis 1995 nach Konzentrationsgrößenklassen



\*) Einbezogen sind 932 Anlagen, die von 1987 bis 1995 in Betrieb waren

Statistisches Landesamt Baden-Württemberg


353 97

Im Vergleich zu 1987 wiesen die Regionen des Deckenschotter, des Tertiär, Malm und Gipskeuper ansteigende mittlere Nitratkonzentrationen auf, während die Nitratwerte in den übrigen Hydroregionen rückläufig waren. Verglichen mit dem Jahr 1993 gab es in den Formationen von Lias und Dogger sowie Muschelkalk und Lettenkeuper einen deutlichen Anstieg der

### Schaubild 5

352 97

### Nitratgehalt im gewonnenen Wasser\*) im Gipskeuper in Baden-Württemberg 1987 bis 1995 nach Konzentrationsgrößenklassen



\*) Einbezogen sind 932 Anlagen, die von 1987 bis 1995 in Betrieb waren.

Statistisches Landesamt Baden-Württemberg

354 97

Tabelle 3
Nitratgehalt des gewonnenen Grund- und Quellwassers" in den Grundwasserlandschaften Baden-Württembergs
1987 bis 1995

| Grundwasserlandschaft          | Jahr                                         | Jahresför-  Darunter Wasser- menge mit Angabe             |                                                           |                                        | Davon in der Konzentrationsgrößenklasse von bis unter mg/l |                                              |                                                     |                                              |                                              | dewogener                                 |                                              |
|--------------------------------|----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|
|                                |                                              | dermenge zu Nitrat                                        |                                                           | -                                      | unter 25                                                   |                                              | 25 – 50                                             |                                              | 50 <sup>1)</sup> und mehr                    |                                           | Nitratgehalt                                 |
|                                |                                              | 1 000 m³ %                                                |                                                           | 1 000 m <sup>3</sup>                   | %                                                          | 1 000 m <sup>3</sup>                         | %                                                   | 1 000 m <sup>3</sup>                         | %                                            | mg/l                                      |                                              |
| Insgesamt                      | 1987<br>1989<br>1991<br>1993<br>1995         | 361 679<br>369 959<br>369 461<br>348 827<br>333 432       | 361 647<br>369 777<br>369 042<br>348 810<br>332 908       | 100<br>100<br>100<br>100<br>100        | 226 292<br>241 829<br>254 287<br>243 046<br>230 099        | 62,6<br>65,4<br>68,9<br>69,7<br>69,1         | 123 682<br>105 146<br>96 274<br>98 598<br>96 608    | 34,2<br>28,4<br>26,1<br>28,3<br>29,0         | 11 673<br>22 802<br>18 481<br>7 166<br>6 201 | 3,2<br>6,2<br>5,0<br>2,1<br>1,9           | 21,1<br>20,5<br>19,0<br>19,0<br>19,0         |
| Davon                          | 4007                                         | 4.040                                                     | 1.010                                                     | 400                                    | 700                                                        |                                              | 200                                                 | 55.0                                         |                                              |                                           | 00.5                                         |
| Quartär/mächtiger Löß          | 1987<br>1989<br>1991<br>1993<br>1995         | 1 648<br>1 784<br>1 947<br>1 863<br>1 701                 | 1 648<br>1 784<br>1 947<br>1 863<br>1 701                 | 100<br>100<br>100<br>100<br>100        | 726<br>1 070<br>855<br>873<br>1 183                        | 44,1<br>60,0<br>43,9<br>46,9<br>69,5         | 922<br>407<br>811<br>764<br>350                     | 55,9<br>22,8<br>41,7<br>41,0<br>20,6         | 307<br>281<br>226<br>168                     | 17,2<br>14,4<br>12,1<br>9,9               | 30,5<br>32,3<br>31,2<br>28,6<br>27,1         |
| Talfüllungen                   | 1987<br>1989<br>1991<br>1993<br>1995         | 20 904<br>20 596<br>20 945<br>19 724<br>17 754            | 20 904<br>20 596<br>20 945<br>19 724<br>17 754            | 100<br>100<br>100<br>100<br>100        | 13 655<br>12 974<br>14 936<br>14 654<br>13 238             | 65,3<br>63,0<br>71,3<br>74,3<br>74,6         | 6 320<br>7 128<br>5 929<br>5 070<br>4 516           | 30,2<br>34,6<br>28,3<br>25,7<br>25,4         | 929<br>494<br>80<br>–                        | 4,4<br>2,4<br>0,4<br>-                    | 21,3<br>19,8<br>18,6<br>18,3<br>17,7         |
| Eiszeitliche Kiese und Sande   | 1987<br>1989<br>1991<br>1993                 | 200 405<br>209 179<br>209 749<br>194 633                  | 200 405<br>209 030<br>209 330<br>194 633                  | 100<br>100<br>100<br>100               | 116 244<br>131 983<br>142 837<br>131 845                   | 58,0<br>63,1<br>68,2<br>67,7                 | 77 168<br>59 354<br>52 253<br>58 100                | 38,5<br>28,4<br>25,0<br>29,9                 | 6 993<br>17 693<br>14 240<br>4 688           | 3,5<br>8,5<br>6,8<br>2,4                  | 20,0<br>19,7<br>17,2<br>17,3                 |
| Moränen                        | 1995<br>1987<br>1989<br>1991<br>1993<br>1995 | 190 284<br>18 961<br>19 219<br>18 697<br>18 909<br>17 350 | 189 970<br>18 961<br>19 219<br>18 697<br>18 909<br>17 316 | 100<br>100<br>100<br>100<br>100<br>100 | 129 713<br>10 203<br>11 467<br>10 291<br>12 338<br>10 800  | 68,3<br>53,8<br>59,7<br>55,0<br>65,2<br>62,4 | 56 992<br>7 760<br>6 760<br>7 210<br>5 670<br>5 890 | 30,0<br>40,9<br>35,2<br>38,6<br>30,0<br>34,0 | 3 265<br>998<br>992<br>1 196<br>901<br>626   | 1,7<br>5,3<br>5,2<br>6,4<br>4,8<br>3,6    | 17,5<br>26,2<br>25,2<br>24,8<br>23,6<br>23,2 |
| Deckenschotter über            | 1555                                         | 17 000                                                    | 17 010                                                    | 700                                    | 10 000                                                     | 02,4                                         | 0 000                                               | 04,0                                         | 020                                          | 0,0                                       | 20,2                                         |
| obere Süßwassermolasse         | 1987<br>1989<br>1991<br>1993<br>1995         | 1 110<br>1 139<br>1 213<br>1 165<br>1 221                 | 1 110<br>1 139<br>1 213<br>1 165<br>1 221                 | 100<br>100<br>100<br>100<br>100        | 513<br>157<br>614<br>116<br>149                            | 46,2<br>13,8<br>50,6<br>10,0<br>12,2         | 597<br>982<br>599<br>1 048<br>1 071                 | 53,8<br>86,2<br>49,4<br>90,0<br>87,7         | -<br>-<br>1<br>1                             | -<br>-<br>0,1<br>0,1                      | 30,9<br>31,4<br>28,4<br>31,4<br>31,5         |
| Tertiär                        | 1987<br>1989<br>1991<br>1993<br>1995         | 3 671<br>3 989<br>4 437<br>4 476<br>4 388                 | 3 671<br>3 989<br>4 437<br>4 476<br>4 388                 | 100<br>100<br>100<br>100<br>100        | 1 811<br>2 000<br>2 343<br>2 159<br>1 998                  | 49,3<br>50,1<br>52,8<br>48,2<br>45,5         | 1 758<br>1 989<br>2 094<br>2 317<br>2 390           | 47,9<br>49,9<br>47,2<br>51,8<br>54,5         | 102<br>-<br>-<br>-                           | 2,8<br>-<br>-<br>-<br>-                   | 23,6<br>25,6<br>22,3<br>25,4<br>25,7         |
| Malm                           | 1987<br>1989<br>1991<br>1993<br>1995         | 30 159<br>30 513<br>26 417<br>26 137<br>24 336            | 30 159<br>30 513<br>26 417<br>26 137<br>24 336            | 100<br>100<br>100<br>100<br>100        | 28 397<br>28 118<br>23 891<br>23 758<br>22 207             | 94,2<br>92,2<br>90,4<br>90,9<br>91,3         | 1 762<br>2 362<br>2 493<br>2 346<br>2 098           | 5,8<br>7,7<br>9,4<br>9,0<br>8,6              | 33<br>33<br>33<br>33<br>31                   | 0,1<br>0,1<br>0,1<br>0,1                  | 19,2<br>18,8<br>19,3<br>20,7<br>19,7         |
| Lias und Dogger                | 1987<br>1989<br>1991<br>1993<br>1995         | 5 212<br>5 023<br>5 452<br>4 889<br>4 830                 | 5 212<br>5 023<br>5 452<br>4 889<br>4 830                 | 100<br>100<br>100<br>100<br>100        | 3 197<br>3 686<br>4 539<br>4 094<br>3 370                  | 61,3<br>73,4<br>83,3<br>83,7<br>69,8         | 1 954<br>1 280<br>897<br>795<br>1 310               | 37,5<br>25,5<br>16,5<br>16,3<br>27,1         | 61<br>57<br>16<br>–                          | 1,2<br>1,1<br>0,3<br>-<br>3,1             | 22,5<br>19,4<br>17,6<br>17,9<br>19,6         |
| Höherer Keuper                 | 1987<br>1989<br>1991<br>1993<br>1995         | 9 665<br>9 437<br>9 396<br>8 681<br>7 657                 | 9 665<br>9 437<br>9 396<br>8 681<br>7 657                 | 100<br>100<br>100<br>100<br>100        | 7 842<br>7 661<br>7 964<br>7 937<br>7 020                  | 81,1<br>81,2<br>84,8<br>91,4<br>91,7         | 1 822<br>1 776<br>1 427<br>744<br>637               | 18,9<br>18,8<br>15,2<br>8,6<br>8,3           | 1<br>-<br>5<br>-                             | 0,0<br>-<br>0,1<br>-                      | 15,5<br>16,2<br>15,3<br>14,3<br>14,2         |
| Gipskeuper                     | 1987<br>1989<br>1991<br>1993<br>1995         | 11 780<br>9 166<br>10 288<br>9 509<br>8 897               | 11 780<br>9 166<br>10 288<br>9 509<br>8 835               | 100<br>100<br>100<br>100<br>100        | 5 196<br>3 507<br>3 631<br>2 968<br>3 511                  | 44,1<br>38,3<br>35,3<br>31,2<br>39,7         | 6 412<br>5 156<br>6 017<br>6 227<br>4 652           | 54,4<br>56,3<br>58,5<br>65,5<br>52,7         | 172<br>503<br>640<br>314<br>672              | 1,5<br>5,5<br>6,2<br>3,3<br>7,6           | 25,9<br>28,1<br>30,5<br>30,1<br>28,6         |
| Muschelkalk und Lettenkeuper . | 1987<br>1989<br>1991<br>1993<br>1995         | 30 835<br>31 573<br>32 094<br>31 076<br>29 281            | 30 835<br>31 573<br>32 094<br>31 059<br>29 221            | 100<br>100<br>100<br>100<br>100        | 12 919<br>12 341<br>15 059<br>15 729<br>12 380             | 41,9<br>39,1<br>46,9<br>50,6<br>42,4         | 15 499<br>16 509<br>15 045<br>14 327<br>15 553      | 50,3<br>52,3<br>46,9<br>46,1<br>53,2         | 2 417<br>2 723<br>1 990<br>1 003<br>1 288    | 7,8<br>8,6<br>6,2<br>3,2<br>4,4           | 29,7<br>29,1<br>27,1<br>26,2<br>28,0         |
| Buntsandstein und Rotliegendes | 1987<br>1989<br>1991<br>1993                 | 11 458<br>11 737<br>12 801<br>11 810                      | 11 426<br>11 704<br>12 801<br>11 810                      | 100<br>100<br>100<br>100               | 10 936<br>10 853<br>12 149<br>11 473                       | 95,7<br>92,7<br>94,9<br>97,1                 | 490<br>851<br>652<br>337                            | 4,3<br>7,3<br>5,1<br>2,9                     |                                              | 20 <u>-</u><br>20 <u>-</u><br>20 <u>-</u> | 12,2<br>12,4<br>12,1<br>11,7                 |
| Kristallin                     | 1995<br>1987<br>1989<br>1991<br>1993         | 10 826<br>15 871<br>16 604<br>16 025<br>15 955            | 10 787<br>15 871<br>16 604<br>16 025<br>15 955            | 100<br>100<br>100<br>100<br>100        | 10 480<br>14 653<br>16 012<br>15 178<br>15 102             | 97,2<br>92,3<br>96,4<br>94,7<br>94,7         | 307<br>1 218<br>592<br>847<br>853<br>842            | 2,8<br>7,7<br>3,6<br>5,3<br>5,3              |                                              |                                           | 11,4<br>18,6<br>14,4<br>17,5<br>16,5<br>13,8 |

<sup>&</sup>lt;sup>1)</sup> Einbezogen sind 932 Gewinnungsanlagen der öffentlichen Wasserversorgung, die von 1987 bis 1995 in Betrieb waren. – <sup>1)</sup> Grenzwert laut Trinkwasserverordnung vom 5. Dezember 1990.

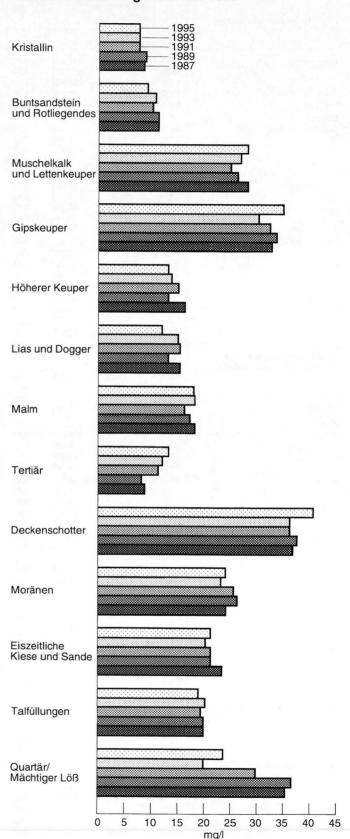
519

gewogenen Nitratwerte. Auch in den für die öffentliche Trinkwasserversorgung bedeutsamen eiszeitlichen Kiesen und Sanden in der Rheinebene wurde zuletzt seit 1991 im Mittel wieder eine leichte Erhöhung der Nitratkonzentration im gewonnenen Wasser registriert.

### Median der Nitratkonzentration

Der bisher verwendete Wert für die mittlere Nitratkonzentration ist in der vorliegenden Darstellung allerdings über die gewonnene Rohwassermenge gewichtet, die durch die zum Meßwert gehörige Anlage gefördert wurde. Es handelt sich also nicht um einen arithmetischen Mittelwert. Dieser gewogene Mittelwert ist daher zum einen von der gewonnenen Wassermenge beeinflußt und andererseits relativ empfindlich gegenüber Extremwerten. Im folgenden wird deshalb der Medianwert, auch Zentralwert genannt, betrachtet, der im Gegensatz dazu von Extremwerten völlig unbeeinflußt bleibt, da er eine der Größe nach geordnete Reihe von Meßwerten halbiert. Das heißt, 50 % der Meßwerte liegen über und 50 % der Meßwerte unter dem Medianwert.

Die Entwicklung der Medianwerte der Nitratkonzentration im gewonnenen Grund- und Quellwasser der 932 Vergleichsanlagen ist in Schaubild 6 dargestellt. Gegenüber 1987 zeigt sich landesweit eine leichte Abnahme der Medianwerte, seit 1991 liegt der Landeswert unverändert bei 20,5 mg NO<sub>3</sub>/l. In den einzelnen Hydroregionen ist jedoch in den 90er Jahren eine unterschiedliche Entwicklung zu beobachten. Verglichen mit dem Jahr 1993 nahm der Medianwert der Nitratgehalte im Quartär, in den eiszeitlichen Kiesen und Sanden, den Moränen, Deckenschotter, Tertiär, Gipskeuper und Muschelkalk zu. Abnahmen waren in den Talfüllungen, im Malm, in Lias und Dogger, Höherem Keuper und Buntsandstein zu verzeichnen. Die mit Abstand höchsten Medianwerte der Nitratkonzentration im Jahr 1995 traten im Deckenschotter (40,4 mg/l) auf - mit einer Zunahme von immerhin 4,4 mg/l im Vergleich zu 1993. In den eiszeitlichen Kiesen und Sanden stieg der Median der Nitratkonzentration nach einer deutlichen Abnahme bis 1993 im Jahr 1995 wieder auf den 91er Wert an. Im Gipskeuper wies der Median nach sinkenden Nitratwerten gegenüber 1993 einen merklichen Anstieg auf 34,8 mg/l (+ 4,7 mg/l) aus, während der Mittelwert seit 1991 rückläufig war. Im Lias und Dogger nahmen die Medianwerte seit 1991 dagegen deutlich ab. Die im Gegensatz dazu steigenden Mittelwerte im gewonnenen Grund- und Quellwasser des Lias und Dogger weisen demnach auf hohe Nitratkonzentrationen im gewonnenen Wasser einzelner Anlagen hin. Auch die deutlichen Niveauunterschiede zwischen Mittelwert und Median in den Grundwasserlandschaften des Kristallin, des Tertiär und des Deckenschotter lassen auf einzelne hohe Nitratgehalte schließen. So liegt der zentrale Nitratwert im Kristallin seit 1991 unverändert bei nur 7,5 mg/l, während der Mittelwert von 17,5 mg/l (1991) auf 13,8 mg/l (1995) zurückging.


Insgesamt ist der rückläufige Trend des Medians der Nitratkonzentration wesentlich geringer ausgeprägt als der des gewogenen Mittelwertes, welcher allerdings hohe Nitratmeßwerte stärker berücksichtigt.

### Weitere Beschaffenheitsparameter

Ebenfalls durch den Menschen verursacht wird das Vorhandensein von Pflanzenbehandlungsmitteln im Grundwasser.

Schaubild 6

Medianwert der Nitratkonzentration im gewonnenen Grund- und Quellwasser\*) in den Hydroregionen Baden-Württembergs 1987 bis 1995



\*) Einbezogen sind 932 Anlagen, die von 1987 bis 1995 in Betrieb waren

Statistisches Landesamt Baden-Württemberg

365 97

Tabelle 4

Desethylatrazingehalt des gewonnenen Grund- und Quellwassers in den Grundwasserlandschaften
Baden-Württembergs 1995

| Grundwasserlandschaft          | Gewonnene Wasser- |          | r mit Angabe      | Davon in der Konzentrationsgrößenklasse<br>von bis unter µg/l |                              |                             |  |
|--------------------------------|-------------------|----------|-------------------|---------------------------------------------------------------|------------------------------|-----------------------------|--|
|                                | menge insgesamt   | zum Dese | thylatrazingehalt | unter 0,06 1)                                                 | 0,06 - 0,10                  | 0,10 <sup>2)</sup> und mehr |  |
|                                | 1 000 m           | 3        | %                 |                                                               |                              |                             |  |
| Insgesamt                      | 532 374           | 488 300  | 100               | 87,2                                                          | 5,4                          | 7,4                         |  |
| Davon                          |                   |          |                   |                                                               |                              |                             |  |
| Quartär/mächtiger Löß          | 2 537             | 2 052    | 100               | 100,0                                                         | 10 m                         | _                           |  |
| Talfüllungen                   | 31 144            | 26 240   | 100               | 92,8                                                          | 5,2                          | 2,0                         |  |
| Eiszeitliche Kiese und Sande   | 205 291           | 198 274  | 100               | 88,1                                                          | 9,1                          | 2,8                         |  |
| Moränen                        | 32 524            | 31 222   | 100               | 94,6                                                          | 2,3                          | 3,2                         |  |
| Deckenschotter                 | 1710              | 1 324    | 100               | 96,1                                                          | -                            | 3,9                         |  |
| Tertiär                        | 5 015             | 4 439    | 100               | 51,0                                                          | _                            | 49,0                        |  |
| Malm                           | 75 901            | 70 912   | 100               | 65,3                                                          | 2,6                          | 32,1                        |  |
| Lias und Dogger                | 11 402            | 9 411    | 100               | 92,3                                                          | 4,8                          | 2,8                         |  |
| Höherer Keuper                 | 19 611            | 15 716   | 100               | 89,6                                                          | 9,4                          | 1,0                         |  |
| Gipskeuper                     | 14 168            | 12 394   | 100               | 98,7                                                          | 0,7                          | 0,5                         |  |
| Muschelkalk                    | 57 730            | 49 509   | 100               | 88,0                                                          | 4,6                          | 7,4                         |  |
| Buntsandstein und Rotliegendes | 39 286            | 35 522   | 100               | 99,9                                                          | 0,1                          | 0,0                         |  |
| Kristallin                     | 36 055            | 31 285   | 100               | 99,9                                                          | 945-7 100 <del>-</del> 446.5 | 0,1                         |  |

<sup>&</sup>lt;sup>1)</sup> Einschließlich der Wassermengen, in denen Desethylatrazin nicht nachweisbar war. – <sup>2)</sup> Grenzwert laut Trinkwasserverordnung vom 5. Dezember 1990.

Im Vordergrund stehen dabei die Herbizide aus der Stoffgruppe der Triazine, darunter Atrazin und dessen Abbauprodukt Desethylatrazin. Belastungen mit Pflanzenschutzmitteln traten 1995 vor allem im Tertiär auf, überwiegend durch Desethylatrazin. Dort enthielten 49 % des gesamten Grundwasseraufkommens 0,1 µg Desethylatrazin pro Liter und mehr (Grenzwert der Trinkwasserverordnung), betroffen waren 26 % der Gewinnungsanlagen. Im Malm der Schwäbischen Alb wiesen rund 30 % des Wassers (knapp 9 % der Anlagen) Atrazinkonzentrationen von 0,1 µg/l und mehr und 32 % des Wassers (11 % der Anlagen) Desethylatrazinwerte der gleichen Größenordnung auf. Im Vergleich zu den Vorjahren stieg der Pflanzenschutzmittelgehalt im Tertiär weiter an, von 0,09 µg/l im Jahr 1991 auf 0,12 µg/l im Jahr 1995. Im Malm dagegen gingen die Werte gegenüber 1993 (0,11 µg/l) wieder auf 0,08 µg/l zurück. Abgesehen von diesen beiden Hydroregionen veränderten sich die gewogenen Mittelwerte der Pflanzenschutzmittelkonzentration in den Grundwasserlandschaften kaum (Landeswert: 0,06 µg/l), die Medianwerte sind seit 1987 unverändert (Tabelle 4).

Bei den hauptsächlich natürlich bedingten Parametern Säuregehalt (pH-Wert) und Gesamthärte fielen zwischen den einzelnen Grundwasserlandschaften ebenfalls Unterschiede auf. Insbesondere im Kristallin sowie im Buntsandstein und Rotliegenden wurde die Wasserqualität durch hohe Säuregehalte mit pH-Werten unterhalb des Grenzwertes von 6,5 gemindert. Dies betraf in beiden Hydroregionen jeweils rund 36 % der Wassermenge. Der Medianwert des pH-Wertes lag im Kristallin 1995 bei 6,7, im Buntsandstein dagegen bei 7,3.

Im Muschelkalk und im Gipskeuper wurde dagegen sehr hartes Wasser mit Härtegraden von mehr als 21, oft sogar 28 und

mehr deutschen Härtegraden gewonnen. Auch das Wasser aus den eiszeitlichen Kiesen und Sanden wies im Mittel (20° dH) hohe Härtegrade auf.

Als geogen bedingte Parameter unterlagen pH-Wert und Gesamthärte seit Ende der 80er Jahre kaum Veränderungen, was sowohl bei der Betrachtung der gewogenen Mittelwerte als auch der Medianwerte deutlich wird.

### Zusammenfassung

Die vorangegangenen Betrachtungen zeigen, daß seit 1987 zwar insgesamt tendenziell rückläufige Nitratkonzentrationen im gewonnenen Grund- und Quellwasser der öffentlichen Wasserversorgung zu beobachten sind, seit 1991 stagnieren die Werte jedoch bei 19 mg NO<sub>2</sub>/l. In den einzelnen Grundwasserlandschaften zeichnen sich bei der Entwicklung der Nitratwerte (gewogene Mittelwerte und Medianwerte) im Rohwasser zudem deutliche Unterschiede ab. Parameter wie der Gehalt an Pflanzenschutzmitteln, pH-Wert und Härtegrad zeigten dagegen nur wenig Veränderung. Die vorliegenden Daten zur Rohwasserbeschaffenheit liefern damit wichtige Hinweise auf die Beschaffenheit der für die öffentliche Wasserversorgung genutzten Grundwasservorräte. Stillegungen von Gewinnungsanlagen und Verlagerung der Wassergewinnung in tiefergelegene, weniger belastete Grundwasserstockwerke sowie verstärkter Einsatz von Aufbereitungsmaßnahmen sind jedoch Hinweise auf weiterhin bestehende Probleme mit vor allem anthropogen verursachten Verunreinigungen im Grundwasser.

Steffi Krenzke